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Abstract
Literature and unpublished neutron spectra of seven classical glass formers in
the boson peak region are evaluated in terms of eigenvalue densities. The boson
peak translates into a true maximum of the eigenvalue density, lying about a
factor of two higher than the boson peak eigenvalue and followed by a slow
decrease towards higher eigenvalues.

We interpret the data in terms of a crossover from sound waves at low
eigenvalues to a more or less constant eigenvalue density at high eigenvalues.
The Ioffe–Regel limit of strong sound wave damping lies at the crossover
eigenvalue λc, slightly higher than the boson peak. A four-parameter fit form
based on the soft-potential model provides reasonable fits up to and including
the beginning of the slow decrease. The parameters from the neutron data
agree within their error bars with those determined from the low-temperature
anomalies in the heat capacity and in the thermal conductivity. The results
indicate that the strong scattering of sound waves in glasses is due to the
interaction with the excess vibrational modes.

1. Introduction

There is as yet no generally accepted explanation of the boson peak in the neutron or Raman
spectrum of glasses. The boson peak is a broad peak at an energy transfer of a few meV,
where simple crystals have only sound waves. Glasses seem to have a sizable amount
of excess vibrations at this boson peak. At present, it is not clear which driving force
brings these vibrations down into the low-frequency region, though there are several possible
explanations [1–8]. Another controversial question [9, 10] is whether the interaction with these
vibrations is the physical reason for the Ioffe–Regel limit, the strong scattering of sound waves
in the terahertz range.
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Figure 1. The Wigner semicircle [11] expectation for a glass.

In this paper, we present neutron spectra of seven heavily studied glasses in terms of
eigenvalue densities. The eigenvalue is the square of the frequency. Since the neutron
measurement supplies the frequency as energy transfer E = h̄ω, we define the eigenvalue
λ = E2 and measure it in meV2. The eigenvalue density p(λ) = g(E)/2E , where g(E) is the
conventional vibrational density of states.

The choice of the eigenvalue as the independent variable rather than the frequency has
several advantages. Experimentally, the boson peak is a broad peak in g(E)/E2. Therefore
it should be only a shoulder in p(λ). But we will see that there is a true maximum in p(λ)

itself in all these glasses and at all temperatures, persisting into the temperature range of the
undercooled liquid.

From a theoretical point of view, the eigenvalue is also a good choice. Figure 1 illustrates
the theoretical problem posed by the boson peak. In glasses, one has force constant disorder
and hence a random dynamical matrix. The eigenvalue density of such a random matrix is the
Wigner semicircle [11] shown in figure 1. Since the short-range order of the glass is not too far
away from that of the crystal, one expects the centre of the semicircle to be close to the lowest
van Hove singularity of the crystal. If the disorder is strong enough, the circle will extend
below the eigenvalue zero into the region of instability. The theoretical problem lies in dealing
with these instabilities.

At present, there is no satisfactory theoretical treatment of the full problem. There is a one-
parameter theory which ignores the instabilities and introduces shear modulus disorder into a
stable solid [12]. The parameter characterizes the strength of the disorder and is limited by
the stability condition. The theory explains the strong sound-wave damping at the boson peak
in an experimentally satisfactory and theoretically appealing way. Introducing the tunnelling
state scattering by hand (a usual procedure for classical theories), it is even able to reproduce
the full thermal conductivity curve of the glass, including the rise after the plateau. The theory
provides a natural crossover from a sound-wave density of states at low frequency to a Wigner
semicircle at high frequency.

The theory predicts only an excess of at most a factor of two over the Debye value at the
peak. Many glasses show a higher excess factor, maybe due to optical modes which are not
taken into account by the theory, but possibly also due to the neglect of the negative eigenvalues.
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These negative eigenvalues exist in the glass, as demonstrated by the two-level states at low
temperature [13]. Therefore the theory might be incomplete at low eigenvalues.

A well-developed treatment of the whole neighbourhood of the eigenvalue zero in figure 1
is the soft-potential model. It requires three parameters: the density Ps of the excess modes,
the zero-point energy W in the purely quartic potential, and the coupling C between sound
waves and excess modes. The soft-potential model has been found to be able to describe the
mixture of sound waves, resonant vibrational and relaxational modes at low frequency, below
the boson peak [14, 15]. The model has been extended [1], describing the boson peak in terms
of the elastic interaction between excess modes. But this new development fails to describe the
crossover to a Wigner-type solution at higher frequencies. The measurements demonstrate that
one needs such a crossover.

In view of these deficiencies of available theories, we decided to use a pragmatic
description to fit our data. This description uses the classical soft-potential model at low
frequency and puts in a crossover to a Wigner-type solution at higher frequencies by hand.
We begin in section 2 with the data, their evaluation and their transformation into an eigenvalue
density. Section 3 describes and motivates their fit in terms of our pragmatical fit form, able
to describe the crossover from a mixture of sound waves, relaxations and resonant modes at
low frequency to a slowly decreasing eigenvalue density at high frequency. The fit results, their
relation to the low-temperature anomalies of glasses [13, 14] and their relation to the Ioffe–
Regel limit are discussed in section 4. Section 5 summarizes and concludes the paper.

2. Neutron data

All measurements presented in this section were performed on the time-of-flight spectrometer
IN6 at the High Flux Reactor of the Institute Laue-Langevin in Grenoble, France. The
wavelength of the incoming neutrons was 4.1 Å. Most of the data have already been published,
but not in the scaling presented here. The samples had a scattering probability of about 10% to
provide a reasonable balance between signal strength and multiple scattering contamination.

The data were evaluated in a new scheme for the determination of the vibrational density
of states from coherent and incoherent inelastic neutron scattering data, developed by two of us
at the Institute Laue-Langevin in Grenoble [16].

Figure 2 shows the classical case of silica, the glass spectra at 155 and 1104 K [18] and the
crystal spectrum from a lattice dynamical calculation [17]. In the region around 10 meV, the
crystal shows pronounced van Hove singularities. The disorder should broaden these low-lying
van Hove singularities into a semi-circle on the basis of Wigner’s solution [11] of the random-
matrix problem. Instead, the glass shows a maximum at a lower frequency, followed by a slow
decrease toward higher eigenvalues.

The boson peak of silica shifts strongly to higher frequency with increasing temperature,
contrary to the usual behaviour of the boson peak in other glasses and implying an improbably
high negative mode Grüneisen parameter. We will discuss a possible physical origin of this
unusual behaviour in section 4.

While the temperature behaviour of silica is unusual, the spectral shape is not. Judging
from the literature, the broad eigenvalue density maximum above the boson peak eigenvalue
seems to be a universal glass feature. In g(E)/E2, one finds a stronger than 1/E-decrease
above the boson peak in a metallic glass [19] as well as in the molecular glasses OTP [20]
and glycerol [21]. This decrease is even more pronounced in the translational motion of a
guest molecule [22]. In low-temperature heat capacity (Cp) data, there is a stronger than 1/T
decrease in Cp/T 3 with increasing temperature T , as seen in both glassy and orientationally
disordered ethanol [23]. The universal decrease of the eigenvalue density is also observed in
cluster simulations [24].
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Figure 2. Eigenvalue density in crystalline α-quartz [17] and in vitreous silica [18], plotted against
the eigenvalue on a logarithmic scale. The lines are fits in terms of equation (4).

Figure 3. Eigenvalue density in crystalline and glassy selenium [25]. The continuous line is a fit
in terms of equation (4); the dashed line shows the sound-wave fraction at 100 K according to the
Debye model. The arrow denotes the fitted crossover eigenvalue λc from sound waves to excess
modes.

Figure 3 shows the eigenvalue density of glass and crystal in another well-studied case,
selenium [25], on a linear eigenvalue scale. Amorphous selenium has a relatively high sound-
wave density (a factor of three higher than the crystal) and a relatively low density of additional
modes. If one extrapolates the Debye sound-wave density of states to higher frequencies, it
already exceeds the measured density of states at about 20 meV2, an energy transfer of 4.5 meV,
which is only half the Debye limit of 9.6 meV. The example illustrates the importance of dealing
correctly with the fate of the sound waves at higher eigenvalues. Obviously, one needs an
effective cutoff of the Debye density of states at an eigenvalue close to the one corresponding
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Figure 4. Eigenvalue density in crystalline, glassy and liquid polybutadiene [26]. Lines are fits in
terms of equation (4).

Figure 5. Eigenvalue density in glassy and liquid B2O3 [27]. Lines are fits in terms of equation (4).

to the boson peak. Our fit in terms of an appropriate interpolation form, equation (4), contains
such a cutoff in terms of a crossover eigenvalue λc, denoted by the arrow in figure 3.

Polybutadiene in figure 4 shows the usual temperature behaviour, a downward shift of the
maximum in p(λ) with increasing temperature. According to the fits, most of this shift is due
to the decrease in the Debye frequency and the increase in the relaxational component, while
the crossover eigenvalue remains unchanged nearly up to the glass transition.

B2O3 in figure 5 shows again an unusual temperature behaviour. Below 300 K, one
has essentially a temperature-independent eigenvalue density. Then the maximum increases
markedly up to 550 K (the glass temperature), with only a small shift of the maximum to lower
values. Above the glass transition, the maximum shifts markedly to lower values. We will
come back to this unusual behaviour in the discussion.
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3. The modelling of the spectra

We choose to fit our data in terms of a pragmatic fit form for a crossover at the boson peak.
At lower frequency, we use the soft-potential description [14, 15] of a mixture of sound waves
with resonant vibrational or relaxational modes. Above the boson peak, we assume a more
or less constant eigenvalue density resulting from a random dynamical matrix. We follow
the theoretical convention of normalizing the eigenvalue density to one. If one wants the real
number of modes per atom, one has to multiply the given numbers by the factor three.

At low frequency, one has an elastic medium with well-defined sound waves coexisting
with a small number of additional modes: resonant vibrational modesas well as relaxational
modes. There, the neutron spectra should be well described by the soft-potential expression for
the effective eigenvalue density

p(λ) = 3

2

λ1/2

(h̄ωD)3
+ fvibλ

3/2 + frel. (1)

This expression for the low-frequency spectrum is derived from the soft-potential model [14],
an extension of the tunnelling model of the low-temperature anomalies of glasses. The first
term contains the Debye frequency ωD and describes the sound waves. In addition to the
sound waves, the model postulates a continuous distribution of additional modes around the
eigenvalue zero. The positive eigenvalues provide vibrational resonant modes coexisting with
the sound waves, the second term of equation (1). The negative eigenvalues, in principle
unstable modes, are supposed to be stabilized by the anharmonic fourth-order term of the
mode potential. They lead to double-well potentials, giving rise to tunnelling states at low
temperatures and to classical relaxation at higher temperatures. The third term of equation (1)
is the soft-potential expectation for this classical relaxation spectrum. fvib and frel are given in
terms of the parameters of the soft-potential model [15]

fvib = Ps M

48

(
1

W

)5

(2)

and

frel ≈ Ps M

4

(
1

W

)2 (
kBT

W

)3/4

. (3)

Here Ps is the density of additional modes around the eigenvalue zero per mass unit (real
number of modes, no factor of three!), M is the average atomic mass and W is the crossover
energy between vibrational and tunnelling states at low temperatures.

The soft-potential model has been checked against the low-temperature glass anomalies
in the heat capacity, the thermal conductivity and in the mechanical loss [14, 15]. The model
predictions were found to be essentially correct, with an important exception: as soon as the
barrier height of the double-well potentials begins to be a sizeable fraction of the thermal
energy at the glass transition, the measured classical relaxation gets much weaker than the soft-
potential prediction [28, 15]. As we will see, the same effect appears in our neutron spectra.

For the neutron data, one needs a suitable interpolation scheme between equation (1)
below the boson peak and a slowly decreasing eigenvalue density above. As it turns out, it
is convenient to use

p(λ) = 3λ1/2/2(h̄ωD)3 + a(λ/λc)
3/2 + frel

1 + (λ/λc)b
. (4)

Here a is the constant eigenvalue density above the boson peak and λc is the crossover
eigenvalue. For a truly constant eigenvalue density at high eigenvalues, the exponent b must be
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Figure 6. (a) Eigenvalue density in polymethylmethacrylate (PMMA) at 100 K, (b) same data and
same fit in g(E) and (c) same data and fit in g(E)/E2, with the fit decomposed in sound waves
(dashed line), additional vibrations (dotted line) and relaxation (dash–dotted line).

3/2; our fits required values between 1.6 and 2.7 in order to describe the slow decrease at high
eigenvalues.

At the crossover eigenvalue λc, the sound-wave density of states is one half of the Debye
value and decreases further with increasing eigenvalue. Similarly, the density of the excess
modes at λc is a/2 and decreases further with decreasing eigenvalue. Thus λc marks indeed the
crossover from the sound-wave regime at low eigenvalues to the excess-mode regime at high
eigenvalues.

Equation (4) has four free parameters: the crossover eigenvalue λc, the eigenvalue density
a, the exponent b and the relaxational scattering strength frel. ωD is not a free parameter,
because it can be taken from ultrasonic and Brillouin data for silica [29], germania [30],
B2O3 [31], selenium [32], polybutadiene [26], polystyrene and polymethylmethacrylate [33].

Equation (2) implies the following relation between a, λc and the soft-potential parameters:

a

λ
3/2
c

= Ps M

48

(
1

W

)5

. (5)

The fit form is illustrated in figure 6 for the example of glassy PMMA at 100 K, showing
the eigenvalue density in figure 6(a), the conventional frequency density of states g(E) in
figure 6(b) and g(E)/E2 (the quantity nearest to the measured neutron spectrum itself, with
the boson peak) in figure 6(c). For g(E)/E2, the effective eigenvalue density of equation (4)
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translates into

g(E)

E2
= 3/(h̄ωD)3 + 2a E2/λ

3/2
c + frel/E

1 + (E2/λc)b
. (6)

Figure 6(c) shows the decomposition of the three terms of this equation for the fit. Note that
the relaxation, which was a constant term in p(λ), is now proportional to 1/E in the neutron
spectrum at low frequency. At higher frequency, it gets an additional cutoff by the denominator.
λc is lying between the boson peak eigenvalue and the maximum in p(λ).

4. Results and discussion

4.1. Boson peak and two-level states

As pointed out in the introduction, the soft-potential model [14, 15] and the almost constant
eigenvalue density of the random-matrix concept [11] are intimately related. In fact, the soft-
potential model deals with the following question: what happens to a constant eigenvalue
density around the eigenvalue zero in the presence of linear perturbation terms? Since there
is always a fourth-order term in the mode potential, most of the modes get pushed up into the
neighbourhood of λc, thereby forming the boson peak of figure 6(c).

If this explanation for the boson peak is true, the eigenvalue density a at the crossover
eigenvalue λc should be close to that at the eigenvalue zero, which feels the perturbation via the
linear terms. How can one check that?

One possibility to do this is to rewrite equation (5), which formulates the pushing-up
mechanism quantitatively, into the form

W

λ
1/2
c

=
(

Ps M

48aλc

)1/5

. (7)

One then has two ways of getting the ratio W/λ
1/2
c : the first one taking the value of W

from the fit to the low-temperature anomalies and the value λc from the neutron fit, the second
one by inserting Ps M from the low-temperature fit and the product aλc from the neutron fit into
equation (7). Table 1 compares data for seven glasses obtained in this way. One finds excellent
agreement between the values obtained directly and those obtained from the eigenvalue density
ratio, with a ratio 1.03 ± 0.04. In fact, the accuracy is a bit surprising, because equation (4),
used for the determination of a and λc, is no more than a pragmatic interpolation form.

From table 1, one draws three conclusions:

(i) the soft-potential explanation of the boson peak seems to be valid;
(ii) the ratio W/λ

1/2
c differs from glass to glass;

(iii) The fit form of equation (4) for the crossover seems to be well chosen.

The last conclusion is further supported by low-temperature heat capacity data. Together with
equation (2), equation (4) translates into a vibrational density of states

g(E) = 3E2/(h̄ωD)3 + Ps M E4/24W 5

1 + (E2/λc)b
(8)

which no longer contains the eigenvalue density a. We insert this vibrational density of states
into the empirical soft-potential expression for the low-temperature heat capacity Cp:

Cp = 10PskB

(
kBT

W

)1.2

+ 3k2
BT

M

∫ ∞

0

g(kBT x)ex x2 dx

(ex − 1)2
(9)

where the first part is the tunnelling state contribution.
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Figure 7. Heat capacity fits (continuous lines) in terms of equation (9) for (a) glassy ethanol [23],
CKN [6] and densified silica [34], (b) silica [35] and selenium [36].

Table 1. Comparison to soft-potential parameters (PS = polystyrene, PMMA = polymethyl-
methacrylate, PB = 1,4-polybutadiene). Ps , C and W are taken from [15]; a, λc and b from
the present work. T is the temperature of the neutron measurement. r1 is the ratio r = W/λ

1/2
c

determined directly, r2 is the ratio determined via equation (7). asp is calculated from equation (12).

Glass SiO2 GeO2 B2O3 Se PS PMMA PB

M (au) 20 34.86 14 78.96 6.5 6.66 5.4
106 Ps M 2.1 2.3 0.54 1.1 1.2 1.6 1.1
W (meV) 0.33 0.33 0.18 0.095 0.155 0.215 0.215
104 C 2.6 2.2 3.1 1.9 7.1 3.5 3.4
T (K) 100 300 300 100 35 40 50
h̄ωD (meV) 42.6 26.8 25.3 9.6 19.6 21.9 19.7
a (meV−2) 0.000 924 0.001 85 0.001 24 0.008 62 0.0015 0.000 993 0.001 34
λc (meV2) 18.6 18.6 7.2 2.79 3.53 3.7 7.0
b 1.99 1.93 1.79 1.57 1.76 1.72 1.75
r1 0.076 0.076 0.067 0.057 0.083 0.112 0.081
r2 0.076 0.067 0.066 0.062 0.086 0.098 0.075
a/asp 0.76 1.08 1.41 0.85 1.26 0.60 1.14

Figure 7(a) shows fits with equation (9) to the measured heat capacities of glassy
ethanol [23], Ca0.4K0.6(NO3)1.4 (CKN) [6] and densified silica [34]. Even the case of
CKN, which has been argued to contradict the soft-potential model [6], is well fitted by the
equation (the ability of the soft-potential model to describe the heat capacity of CKN has been
demonstrated earlier [37]). Figure 7(b) shows the fit to the heat capacities of silica [35] and
selenium [36].

9
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Figure 8. Ioffe–Regel limit frequencies from x-ray and neutron Brillouin data [9] plotted against
the crossover frequency λ

1/2
c for 12 glasses. The value for NiZr (22 meV) lies out of the range.

Table 2. Fit parameters of equation (9) to the low-temperature heat capacity data of figure 7.

Glass a-SiO2 d-SiO2 CKN C2H5OH Se

M (au) 20 20 40.1 5.12 78.96
h̄ωD (meV) 42.5 46.8 16.7 20.0 9.6
106 Ps M 2.2 1.6 14.1 7.6 0.92
W (meV) 0.32 0.45 0.34 0.34 0.095
λc (meV2) 18.7 67.3 13.0 14.1 2.25
b 1.95 2.5 3.0 2.1 1.66

The good fits in figures 7(a) and (b) show that the crossover parameter λc is able to adapt
both the position and the height of the maximum in Cp/T 3, which is again an argument both
for the validity of our soft-potential explanation of the boson peak and for the suitability of the
interpolation form, equation (4).

Table 2 compiles the fit parameters of the heat capacity data in figure 7.

4.2. Ioffe–Regel limit

Though our definition of the crossover eigenvalue λc is in terms of a crossover in the vibrational
density of states, one expects a close connection to the Ioffe–Regel limit, where the sound
waves get overdamped.

Figure 8 compares fitted values of λ
1/2
c to results obtained from x-ray and neutron

Brillouin scattering [9, 10]. The crossover eigenvalues of a-SiO2, GeO2, B2O3, selenium and
polybutadiene are taken from table 1; those of d-SiO2, CKN and ethanol from table 2. The
values for glycerol [21] OTP [20] and NiZr [10] were fitted to the neutron data in the literature;
the value for Li2O–2B2O3 to unpublished neutron data [40]. The error bars of these eigenvalues
are small, much smaller than the error bars of the Ioffe–Regel limit in figure 8. Note that
selenium has two data points: the lower one taken from neutron Brillouin data [39] and the
higher one taken from x-ray Brillouin data [38].

10
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There is one case, NiZr, where the x-ray values are much larger than λ
1/2
c and which

has been taken as evidence against the coincidence of the Ioffe–Regel limit and the boson
peak [10]. This is a controversial topic [9, 10]. NiZr is not the only glass where the phonons
above the boson peak have relatively low damping, lower than that calculated from the Ioffe–
Regel criterion for their respective frequencies (remember that this limit increases linearly with
frequency). OTP is another such case [9].

If we consider NiZr and OTP as outsiders, the rest fits nicely to the relation EIR/λ
1/2
c =

0.94 ± 0.07, indicating a Ioffe–Regel limit EIR which is even a bit lower than the crossover of
our interpolation formula, equation (4), again in surprisingly accurate agreement with a rather
hazy expectation.

Let us see whether one can quantify the hazy expectation. The Ioffe–Regel limit is defined
as the frequency at which the mean free path l (the length over which the amplitude of the sound
wave decreases by the factor 1/e) is equal to the wavelength. Let us start from the soft-potential
equation (12) of [15]

l−1
res,vib = πωC j

v j

1

8

(
h̄ω

W

)3

, (10)

where ω is the frequency of the sound wave, C is a dimensionless measure of the coupling
between the sound wave and the excess mode, v is the sound velocity and the index j is l and t
for longitudinal and transverse waves, respectively. Since the wavelength is 2πv j/ω, the Ioffe–
Regel limit frequency for longitudinal and transverse waves should be the same for Cl = Ct.
In fact, one finds Cl ≈ Ct ≈ C , where C is an average value which can be fitted to the low-
temperature thermal conductivity [15]. Assuming that the Ioffe–Regel limit lies indeed at λc,
one gets the condition

ω

2πv j
= πωC j

v j

1

16

λ
3/2
c

W 3
. (11)

The 16 in the denominator comes from the interpolation form, equation (4), according to which
we have a factor of one half at λc. Again inserting equation (5), one finally gets an expression
for a (here denoted asp to emphasize that it is calculated from the soft-potential model and our
interpolation form, provided that λc is indeed the Ioffe–Regel limit):

asp = Ps M

6π2CW 2
. (12)

The ratio between the measured a and this soft-potential value asp is 0.97 ± 0.12 according to
table 1, again a surprisingly good agreement.

Let us return to the questionable case in figure 8. If this idea works so well, why does
it fail in NiZr? NiZr [10] shows clearly that one has well-defined sound waves above the
crossover eigenvalue λc, well defined in the Ioffe–Regel sense that their width is smaller than
their frequency divided by π . On the other hand, NiZr has a boson peak which looks exactly
like the boson peak in other glasses (and is in fact nicely fitted by equation (4)).

NiZr is a metallic glass, which is relatively close to a frozen simple liquid. One expects
only sound waves and nothing else, which is very different from the silica case, where the boson
peak consists essentially of coupled SiO4-tetrahedra librations [41]. Thus the approximately
constant eigenvalue density above the crossover must consist, to a large extent, of phonons
from the neighbourhood of the zone boundary. In fact, the modes show a kind of broadened
dispersion curve up to and even exceeding the zone boundary, which is a common feature of
metallic glasses. How can one reconcile this with a Ioffe–Regel limit at a rather low frequency?

In principle, this is not impossible. While the phonons above the crossover have a width
lower than their Ioffe–Regel value, their width is still larger than the Ioffe–Regel width at the

11
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Figure 9. Temperature dependence of the crossover eigenvalue λc for (a) silica and selenium,
(b) polybutadiene and polystyrene.

crossover. If one admits the possibility that the width stays approximately constant down to
lower frequency, one could still have the Ioffe–Regel limit at the crossover. Such a behaviour
has never been observed in glasses, but occurs in crystals with a low-lying resonant mode [42].
In order to check this possibility in NiZr, one should perform x-ray measurements with higher
resolution, to see whether the width of the phonon at 3.4 meV is indeed as small as is given by
the relatively poor resolution of the published measurements [10].

4.3. Temperature dependence

Figures 9(a) and (b) show the temperature dependence of the crossover frequency λ
1/2
c , plotted

against the ratio T/Tg, where Tg is the glass temperature. In two cases, silica and selenium, the
crossover eigenvalue increases with increasing temperature even beyond the glass temperature
(figure 9(a)). Within the error bars, this increase is linear in temperature, which is consistent
with a linear increase of the fourth-order term W in the excess mode potential. This in turn is
consistent with the existence of a higher-order term, say an x6 term in the mode displacement
x , which becomes important with increasing mean square displacement (the mean square
displacement increases essentially linearly with temperature in the glass phase).

The effect is absent in B2O3 and in the polymers. Polybutadiene and polystyrene are
shown in figure 9(b). One observes an essentially constant λc (implying a constant W ) until
one approaches the glass transition. Then, λc decreases markedly in B2O3 and more markedly
in polybutadiene than in polystyrene. In polymethylmethacrylate and polyisobutylene, where

12
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Figure 10. Temperature dependence of the relaxational scattering coefficient frel in B2O3,
polybutadiene and polystyrene.

we have only glass phase data, λc stays temperature-independent within the error bars, even
though the Debye frequency decreases markedly with increasing temperature.

Figure 9 demonstrates that the crossover eigenvalue does not depend on the Debye
frequency. In silica, the Debye frequency increases by 2.5% as the temperature increases to
the glass transition; in selenium it decreases by 13%. Nevertheless, both crossover eigenvalues
increase, most probably by an anharmonic temperature effect. Interestingly, if one tries to
explain the phonon hardening in silica by the hardening of the boson peak and the known
interaction between sound waves and excess modes, one also fails. The interaction in our
model accounts only for about one fifth of the observed Debye frequency shift. These two kind
of modes are less dependent on each other than one usually thinks, so a perturbation treatment
of their interaction seems feasible.

The eigenvalue density a is practically temperature-independent in all cases, with the
exception of B2O3. There, one finds an increase in a by a factor of 1.4 in the glass phase,
between 300 and 550 K (see figure 5). In the B2O3 liquid, a stays again constant. We have no
explanation for this anomalous behaviour.

Figure 10 shows the temperature dependence of the relaxational part frel of the scattering
in polystyrene, polybutadiene and B2O3. In principle, the soft-potential model predicts a
relatively strong scattering already at low temperatures, increasing with temperature as T 0.75

(see equation (3)). In most cases, however, the observed relaxational scattering is weaker than
the soft-potential prediction. An exception is polystyrene, where the relaxational component at
low temperature even exceeds the soft-potential expectation (the dashed line in figure 10).

One needs temperatures above 50 K to perform a reasonable measurement. In the neutron
measurement, one samples barriers about three times higher than the average thermal energy.
This implies that one samples relatively large negative eigenvalues, which can have a different
eigenvalue density. From ultrasonic data [15], one knows that the relaxations fall rapidly below
the soft-potential expectation with rising temperature, consistent with the low values of frel

observed in experiment. The advantage of the soft-potential formulation, however, is that one
gets the correct spectral form of the relaxational scattering and thus gets rid of a disturbing
influence.
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5. Summary and conclusions

In this work, we fitted neutron spectra of seven glasses, silica, germania, selenium, boron
trioxide and three polymers, in terms of an interpolation form. The form holds the promise
of resembling the final theory for the vibrational density of states of glasses, a theory which is
still missing. The form interpolates from a mixture of sound waves, resonant vibrational modes
and relaxational modes at low frequency, described in terms of the soft-potential model [14, 15],
to the more or less constant eigenvalue density of a random dynamical matrix at higher
frequencies.

The interpolation form characterizes the sound waves by the Debye frequency ωD, the
high-frequency eigenvalue density by a free parameter a and the crossover between the two
regions by a crossover eigenvalue λc. An additional dimensionless parameter b is needed to
describe a decrease in the eigenvalue density towards higher eigenvalues, which is found not
only in the seven glasses of the present work, but also in all available literature data.

The fits show that the fitted high-frequency eigenvalue density a is consistent with the
soft-potential parameters Ps and W . In fact, a can be calculated from the two soft-potential
parameters and the crossover eigenvalue (see table 1).

There is a third dimensionless soft-potential parameter, C , which characterizes the
interaction between excess modes and sound waves. Using this parameter value from soft-
potential fits of the low-temperature glass anomalies, one predicts, on the basis of our
interpolation form, that the fitted crossover eigenvalues should be close to the Ioffe–Regel
limit of strong damping of the sound waves, where the mean free path equals the wavelength.
A comparison with x-ray and neutron Brillouin data of 12 glasses (figure 8) shows that this is
indeed true in nine cases.

The results indicate that one needs a theory which interpolates from sound waves to a
random-matrix solution. The theory should provide an interpolation which is close to our
pragmatic form, equation (4). In addition, the theory should explain why the eigenvalue density
tends to decrease toward higher eigenvalues. This might be the influence of the vibrational
entropy, which tends to push the eigenvalues downward. This influence is not taken into account
in any of the existing theories and models [1–8].
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